Yıldız Technical University Computer Engineering Department 2019-2020 Academic Year Spring Semester BLM1612 Circuit Theory

Name:
Surname:
Student I.D.:
Signature:

Take Home Quiz, Form: A

Announcement Time: 17:00 30/April/2020

Due Time: $08:59 \ 04/May/2020$

Submission: Email your work, scanned (either with scanner or phone) to a **single PDF** file named as $\langle group\ no \rangle$ _ $\langle student\ id \rangle$.pdf

to **ytudonanim@gmail.com** if you are in Gr.1 and

to hamzailhan6@gmail.com if you are in Gr.2,

with 20192_BLM1612_homework subject field. (Ex. file name gr1_19011000.pdf)

You must **show all of your work** for full credit.

A correct answer with nowork shown is worth no points.

Use the **methods mentioned in questions** for your answers.

Section 1. Circuit Elements and Simple Resistive Circuits

- 1. Which quantity consists of a unit 1KWh?
 - (a) Time
 - (b) Power
 - (c) Energy
 - (d) Charge
 - (e) None of the above
- 2. A piece of resistive material has a length of 10mm, a cross sectional area of $7mm^2$ and a resistivity of $4700 \times 10^{-8} \Omega \cdot m$. What is its resistance?
 - (a) $67\mu\Omega$
 - (b) $67m\Omega$
 - (c) 30.4Ω
 - (d) $30.4k\Omega$
 - (e) None of the above
- 3. The internal conductance of ideal voltage source is
 - (a) Infinite
 - (b) Zero
 - (c) Equal to internal resistance
 - (d) Equal to external collector
 - (e) None of the above

4. Calculate the effective resistance of the following combination.

- (a) 22Ω
- (b) 32Ω
- (c) 42Ω
- (d) 52Ω
- (e) None of the above
- 5. Which of the followings is/are active element?
 - (a) Voltage source
 - (b) Current source
 - (c) Both a and b
 - (d) Capacitor
 - (e) None of the above
- 6. Calculate the effective resistance of the following combination.

- (a) 3Ω
- (b) 6Ω
- (c) 8Ω
- (d) 16Ω
- (e) None of the above
- 7. The internal resistance of ideal current source is
 - (a) Infinite
 - (b) Zero
 - (c) Equal to internal conductance
 - (d) 100Ω
 - (e) None of the above

Section 2. Circuit Analysis Techniques

8. Use the mesh analysis to find the power dissipated by the independent current source.

- (a) 120W
- (b) 1560W
- (c) 2400W
- (d) 960W
- (e) None of the above
- 9. Use the nodal analysis to find the v_1 and v_2 voltages.

- (a) $v_1 = 100.00V, v_2 = 20.00V$
- (b) $v_1 = 99.02V, v_2 = -8.29V$
- (c) $v_1 = 100.00V, v_2 = -20.00V$
- (d) $v_1 = -99.02V, v_2 = 8.29V$
- (e) None of the above
- 10. Use the nodal analysis to find the v_0 . Use node a as the reference node.

- (a) 37.50V
- (b) -37.50V
- (c) -62.50V
- (d) -100.00V
- (e) None of the above

11. Find the Norton equivalent current (I_N) and Norton equivalent resistance (R_N) of the given circuit with respect to terminals a and b.

- (a) $I_N = 60mA, R_N = 1866.67\Omega$
- (b) $I_N = 260mA, R_N = 430.77\Omega$
- (c) $I_N = 32.31mA, R_N = 3466.67\Omega$
- (d) $I_N = 210mA, R_N = 533.33\Omega$
- (e) None of the above
- 12. Find the Norton equivalent current (I_N) and Norton equivalent resistance (R_N) of the given circuit with respect to terminals a and b.

- (a) $I_N = 3A, R_N = 1.5k\Omega$
- (b) $I_N = 0A, R_N = 1.5k\Omega$
- (c) $I_N = 0A, R_N = 750\Omega$
- (d) $I_N = 3A, R_N = 750\Omega$
- (e) None of the above

13. Use the principle of superposition to find the current i.

- (a) 7.11mA
- (b) 17.89mA
- (c) 25.00mA
- (d) 15.00mA
- (e) None of the above
- 14. Find the Thévenin equivalent voltage (V_{TH}) and Thévenin equivalent resistance (R_{TH}) of the given circuit with respect to terminals a and b.

- (a) $V_{TH} = 30V, R_{TH} = 30\Omega$
- (b) $V_{TH} = 35V, R_{TH} = 23.33\Omega$
- (c) $V_{TH} = 20V, R_{TH} = 30\Omega$
- (d) $V_{TH} = 30V, R_{TH} = 20\Omega$
- (e) None of the above

15. What is the maximum power that can be delivered to the 6Ω resistor using the variable resistor R_0 ?

- (a) 37.5W
- (b) 70W
- (c) 150W
- (d) 300W
- (e) None of the above

Section 3. Operational Amplifier

16. No energy is stored in the circuit given when the input voltage v_g jumps instantaneously from 0 to 25mV at time t=0. Drive the expression for $v_0(t)$ for $0 \le t \le t_{sat}$ (t_{sat} is the time required for any op amp to reach saturation).

- (a) $v_0(t) = t^2$
- (b) $v_0(t) = 2t$
- (c) $v_0(t) = 2$
- (d) $v_0(t) = 0$
- (e) None of the above
- 17. The op amp in the noninverting amplifier circuit given has an input resistance of $560k\Omega$, an output resistance of $8k\Omega$, and an open-loop gain of 50,000. Assume that the op amp is operating in its linear region. Calculate the voltage gain $\left(\frac{v_o}{v_g}\right)$.

- (a) 1
- (b) 2
- (c) 6.75
- (d) 13.49
- (e) None of the above

18. The op amps in the circuit given are ideal. Find i_a .

- (a) 0mA
- (b) 3.7mA
- (c) 5.7mA
- (d) 7.7mA
- (e) None of the above
- 19. The two op amps are ideal in the given circuit. Calculate v_{o1} and v_{o2} .

- (a) $v_{o1} = 9.10V$ and $v_{o2} = 13.60V$
- (b) $v_{o1} = 15.85V$ and $v_{o2} = 13.60V$
- (c) $v_{o1} = 14.75V$ and $v_{o2} = 16.00V$
- (d) $v_{o1} = 15.00V$ and $v_{o2} = 10.00V$
- (e) None of the above

Section 4. Capacitor, Inductor and RL/RC Circuits

- 20. The current in a 150mH inductor is known to be $i_L = 25te^{-500t}A$ for $t \ge 0$. Find the energy stored in the inductor at 5ms.
 - (a) $4.74\mu J$
 - (b) 7.9nJ
 - (c) 10.26mJ
 - (d) $461.73\mu J$
 - (e) None of the above
- 21. In the circuit given, switch A has been open for a long time and switch B has been closed for a long time. At t=0 the switch A closes. 25ms after switch A closes, switch B opens. Determine $i_L(t)$ for $t \ge 25ms$.

- (a) $i_L(t) = 75e^{-50000(t-0.025)}mA$
- (b) $i_L(t) = 50e^{-50000(t-0.025)}mA$
- (c) $i_L(t) = 50e^{-20(t-0.025)}mA$
- (d) $i_L(t) = 75e^{-20(t-0.025)}mA$
- (e) None of the above
- 22. The switch in the given circuit has been open for a long time. At t = 0 the switch is closed. Determine $i_0(t)$ for $t \ge 0$.

- (a) $i_0(t) = 0.17e^{-250t}A$
- (b) $i_0(t) = 0.5e^{-500t}A$
- (c) $i_0(t) = 0.5e^{-250t}A$
- (d) $i_0(t) = 0.17e^{-500t}A$
- (e) None of the above

- 23. A capacitor has plates $15mm \times 30mm$ which have separation of $10\mu m$. If the gap between the plates filled with air, calculate the capacitance of the device.
 - (a) 400pF
 - 400nF(b)
 - (c) $400\mu F$
 - (d) 400mF
 - (e) None of the above
- 24. There is no energy stored in the capacitor in the circuit given. Switch 1 closes at t = 0. Switch 2 closes at 2.5ms. Find $v_0(t)$ for i) $0 \le t < 2.5ms$ and ii) $t \ge 2.5ms$.

(a)
$$v_0(t) = \begin{cases} -20 + 20e^{-4t}V & , 0 \le t < 2.5ms \\ -4 - 3.29e^{-2.4(t - 0.0025)}V & , t \ge 2.5ms \end{cases}$$
(b)
$$v_0(t) = \begin{cases} -20 + 20e^{-4t}V & , 0 \le t < 2.5ms \\ -6 - 3.29e^{-312.5(t - 0.0025)}V & , t \ge 2.5ms \end{cases}$$
(c)
$$v_0(t) = \begin{cases} -4 + 4e^{-250t}V & , 0 \le t < 2.5ms \\ -6 - 4.14e^{-312.5(t - 0.0025)}V & , t \ge 2.5ms \end{cases}$$
(d)
$$v_0(t) = \begin{cases} -20 + 20e^{-250t}V & , 0 \le t < 2.5ms \\ -6 - 3.29e^{-312.5(t - 0.0025)}V & , 0 \le t < 2.5ms \end{cases}$$
(d)
$$v_0(t) = \begin{cases} -20 + 20e^{-250t}V & , 0 \le t < 2.5ms \\ -6 - 3.29e^{-312.5(t - 0.0025)}V & , t \ge 2.5ms \end{cases}$$

(b)
$$v_0(t) = \begin{cases} -20 + 20e^{-4t}V & , 0 \le t < 2.5me \\ -6 - 3.29e^{-312.5(t - 0.0025)}V & , t \ge 2.5ms \end{cases}$$

(c)
$$v_0(t) = \begin{cases} -4 + 4e^{-250t}V & , 0 \le t < 2.5ms \\ -6 - 4.14e^{-312.5(t - 0.0025)}V & , t \ge 2.5ms \end{cases}$$

(d)
$$v_0(t) = \begin{cases} -20 + 20e^{-250t}V & , 0 \le t < 2.5m. \\ -6 - 3.29e^{-312.5(t - 0.0025)}V & , t \ge 2.5ms \end{cases}$$

- (e) None of the above
- 25. The switch in the given circuit has been open for a long time. At t=0 the switch is closed. Determine v(t) for $t \geq 0$.

- $v(t) = 120e^{-277.78t}V$ (a)
- $v(t) = 300e^{-1000t}V$ (b)
- $v(t) = 300e^{-277.78t}V$ (c)
- $v(t) = 120e^{-1000t}V$ (d)
- None of the above (e)