
USER DEFINED FUNCTIONS*

1
Introductory Computer Sciences 2018-2019

Fall Week #7

* Some of the contents are adopted from
MATLAB® for Engineers, Holly Moore, 3rd Ed., Pearson Inc., 2012.

Functions in Matlab
• The MATLAB programming language is built around functions. A function

is a piece of computer code that accepts an input argument from the user
and provides output to the program.

• Functions allow us to program efficiently, enabling us to avoid rewriting
the computer code for calculations that are performed frequently.

• For example most computer programs contain a function that calculates
the sine of a number.

• In MATLAB, sin is the function name used to call up a series of commands
that perform the necessary calculations.

• The user needs to provide an angle, and MATLAB returns a result.

• It isn’t necessary for the programmer to know how MATLAB calculates
the value of sin(x).

2
Introductory Computer Sciences 2018-2019

Fall Week #7

User Defined Functions
• We may wish to define our own functions – those are used commonly in

our programming.

• User-defined functions are stored as m-files and can be accessed by
MATLAB, if they are in the current folder or on MATLAB’s search path.

• Both built-in MATLAB functions and user-defined MATLAB functions have
the same structure. Each consists of a name, user-provided input, and
calculated output.

• For example, the function cos(x), is named cos, takes the user input inside
the parentheses (in this case, x), and calculates a result.

• The user does not see the calculations performed, but just accepts the
answer.

3
Introductory Computer Sciences 2018-2019

Fall Week #7

Structure of a Function
• User-defined functions work the same way. Imagine that you have

created a function called my_function.

• Using my_function (x) in a program or from the command window
will return a result, as long as x is defined and the logic in the function
definition works.

• User-defined functions are created in m-files.

• Each must start with a function definition line that contains:

ÁThe word function,

ÁA variable that defines the function output,

ÁA function name,

ÁA variable used for the input argument.

4
Introductory Computer Sciences 2018-2019

Fall Week #7

Structure of a Function, ctd.

• A function is a box,

• It hides the code and its workspace and communicates with the “world”
using the input and output variables

5
Introductory Computer Sciences 2018-2019

Fall Week #7

Input OutputFUNCTION

Functions in m-file Structure
• A very simple MATLAB function that calculates the value of a particular

polynomial:

function output = poly(x)

%This function calculates

%the value of a third - order polynomial

output = 3*x . ^3 + 5*x . ^2 - 2*x +1;

• The function name is poly , the input argument is x , and the output
variable is named output .

• Before this function can be used, it must be saved into the current
folder. The file name must be the sameas the function name in order for
MATLAB to find it.

6
Introductory Computer Sciences 2018-2019

Fall Week #7

Functions in m-file Structure, ctd.
• All of the MATLAB naming conventions we learned for naming variables

apply to naming user-defined functions.

In particular,

• The function name must start with a letter.

• It can consist of letters, numbers, and the underscore.

• Reserved names cannot be used.

• Any length is allowed, although long names are not good programming
practice.

• Once the m-file has been saved, the function is available for use from the
command window, from a script m-file, or from another function.

• You cannot execute a function m-file directly from the m-file itself.

• This makes sense, since the input parameters have not been defined until
you call the function from the command window or a script m-file.

7
Introductory Computer Sciences 2018-2019

Fall Week #7

Functions in m-file Structure, ctd.
• Consider the poly function just created. If, in the command window, we

type poly(4) then MATLAB responds with

ans =

265

• If we set a equal to 4 and use a as the input argument, we get the same
result:

a = 4;

poly(a)

ans =

265

8
Introductory Computer Sciences 2018-2019

Fall Week #7

Example
• A Matlab function sumOfNumbers.m

• We can use []: if there are more than one output variables ([out1 out2]).

9
Introductory Computer Sciences 2018-2019

Fall Week #7

function result = sumOfNumbers (a,b)

result = a+b;

output variable(s)

The input variable(s)

Example, ctd.
• Assume we wrote the function:

function result = sumOfNumbers (a,b)

result = a+b;

and in the workspace we run:

a = 1;

b = 2;

x = 3;

y = 4;

s = sumOfNumbers (x, y)

What is the output?
s = 7

10Introductory Computer Sciences 2018-2019
Fall Week #7

Matlab

Workspace:

a = 1

b = 2

x = 3

y = 4

s = 7

Function

Workspace:

a = 3

b = 4

result = 7

Example-2
• Write and test a function DR that changes degrees to radians and another

function RD that changes radians to degrees. The functions should be
able to accept both scalar and matrix input.

1. State the Problem

Create and test two functions, DR and RD , to change degrees to
radians and radians to degrees

2. Describe the Input and Output

Input A vector of degree values

A vector of radian values

Output A table converting degrees to radians

A table converting radians to degrees

3. Develop a Hand Example

degrees = radians * 180/pi

radians = degrees * pi/180

11Introductory Computer Sciences 2018-2019
Fall Week #7

Example-2, ctd.
4. Develop a MATLAB Solution

function y = dr (x) function deg = rd (rad)

y = x*pi/ 180 ; deg = rad * 180 / pi ;

5. Test the solution

x = 0:45:180 ;

in_rad = dr(x)

in_rad =

0 0.7854 1.5708 2.3562 3.1416

rd(in_rad)

ans =

0 45 90 135 180

12Introductory Computer Sciences 2018-2019
Fall Week #7

Comments & Help for Functions
In a MATLAB function, the comments on the line immediately following the
very first line serve a special role. These lines are returned when the help
function is queried from the command window.

Consider, for example, the following function:

function results = func (x)

%This function converts seconds to minutes

results = x. / 60;

• Querying the help function from the command window

help f unc

• returns

This function converts seconds to minutes

13
Introductory Computer Sciences 2018-2019

Fall Week #7

Multi Input and Output Functions
function [x,v,a] = motion(t,x 0)

% This function calculates the lateral position (x),

% velocity (v), and acceleration (a) of a mass attached

% to a spring for a given value of time (t) and initial

% position (x 0) assuming the velocity is initially 0.

x = x 0.* cos (t);

v = - x0.*sin(t);

a = - x0.* cos (t);

We can use the function to find values of position, velocity, and acceleration
of the mass at specified times:

[x,v,a] = motion(3,1)

x =

- 0.9900

v =

- 0.1411

a =

0.9900

14
Introductory Computer Sciences 2018-2019

Fall Week #7

Multi Input and Output Func’s, ctd.
• If we call the motion function without specifying all three outputs, only

the first output will be returned:

motion(3,1)

ans =

- 0.9900

• Using a vector of time values from 0 to 3 in the motion function returns
three row vectors of answers:

time=0:1:3;

[x,v,a] = motion(time,1)

x =

1.0000 0.5403 - 0.4161 - 0.9900

v =

0 - 0.8415 - 0.9093 - 0.1411

a =

- 1.0000 - 0.5403 0.4161 0.9900

15
Introductory Computer Sciences 2018-2019

Fall Week #7

Some Useful Commands for Func’s

16
Introductory Computer Sciences 2018-2019

Fall Week #7

Command Description

nargin Number of function input arguments

nargout Number of function output arguments

nargchk() Validate number of input arguments

error() Display message and abort function

warning() Display descriptive warning message

Examples:

nargin ('motion‘)

ans =

2

nargout ('motion')

ans =

3

Local Variables
• The variables used in function m-files are known as local variables . The

only way a function can communicate with the workspace is through
input arguments and the output it returns.

• Any variables defined within the function exist only for the function to
use. For example, consider the g function:

function output = g(x,y)

% This function multiplies x and y together

% x and y must be the same size matrices

a = x . *y ;

output = a;

• The variables a, x, y, and output are local variables. They can be used for
additional calculations inside the g function, but they are not stored in
the workspace.

17
Introductory Computer Sciences 2018-2019

Fall Week #7

Global Variables
• Unlike local variables, global variables are available to all parts of a computer

program. In general, it is a bad idea to define global variables. However, MATLAB
protects users from unintentionally using a global variable by requiring that it be
identified both in the command-window environment (or in a script m-file) and in
the function that will use it. Consider the distance function:

function result = distance(t)

%This function calculates the distance a falling

% object travels due to gravity

global G

result = 1/ 2*G*t . ^2;

• The global command alerts the function to look in the workspace for the value of
G. Gmust also have been defined in the command window (or script m-file) as a
global variable:

global G

G = 9. 8;

• This approach allows you to change the value of G without needing to redefine
the distance function or providing the value of G as an input argument to the
distance function.

18
Introductory Computer Sciences 2018-2019

Fall Week #7

Example-3
• Factorial calculation of a scalar in a function:

function y = fact(x)

if length(x)~=1 || x < 0

error('You entered an invalid number');

end

f = 1;

if x>0

for i =1:x

f = f * i ;

end

else

f = 1;

end

y=f;

19
Introductory Computer Sciences 2018-2019

Fall Week #7

Example-4
• Calculation the roots of a quadratic polynomial:

function [x 1 x2] = findroots (a,b,c)

% This function computes the roots of a

% quadratic polynomial whose coefficients

% a,b and c are given (ax^ 2+bx+c= 0).

delta = b^ 2- 4*a*c;

x1 = (- b+sqrt (delta))/(2*a);

x2 = (- b- sqrt (delta))/(2*a);

20
Introductory Computer Sciences 2018-2019

Fall Week #7

Subfunctions
• A function M-file may contain the code for more than one function.

• The first function in a file is the primary function, and is the one invoked
with the M-file name.

• Additional functions in the file are called subfunctions, and are visible
only to the primary function and to other subfunctions.

• Each subfunction begins with its own function definition line.

• Subfunctions follow each other in any order after the primary function.

21
Introductory Computer Sciences 2018-2019

Fall Week #7

Subfunctions - Example
function [x 2 x3] = xsc (x)

% Calculation of the square and the cube of the entered

scalar

x2 = sq (x);

x3 = cube (x);

function x 2 = sq (x)

x2 = x*x;

function y = cube (a)

y = sq (a)*a;

>> [sq cu] = xsc (5)

sq =

25

cu =

125

22
Introductory Computer Sciences 2018-2019

Fall Week #7

Some Examples about life span and
scope

Introductory Computer Sciences 2018-2019
Fall Week #7

23

■ Variable life span - from the moment it is created until its memory is
released

■ Variable scope ïthe places in the program where it is recognized and
can be modified.

■ Local variables:

■ The scope is restricted to within the function in which variable was
created.

■ The lifespan is limited to the running time of the function in which
variable was created (or until cleared)

■ If a local variable is created in the workspace:

■ The scope is restricted to the workspace

■ The lifespan is as long as Matlab runs (or until cleared)

Scope

function res = mult 2nums(x,y)

res = x * y;

>> res = mult 2nums(4, 5);

>> x * y

2
4

??? Undefined function or variable 'x'.

4

5

x

y

20res

20res

Scope

function res = mult2nums(x,y)

res = a * b;

>> a = 100;

>> b = 200;

>> res = mult2nums(4, 5);

>> x * y

2
5

??? Undefined function or variable 'a'.

Error in ==> mult2nums at 2
a * b

>>

100

200

a

b

4

5

x

y

>> x = 4;

>> b = y;

>> res = mult 2nums(x, y);

• Formal parameters
named in the statement of the function

• Actual parameters
with which the function is called

function res = mult2nums(x,y)

res = x * y;

Call by value

2
6

Call by value

Subtle yet very important point:

When a function is called the actual parameters are
copied into the formal parameters

function res = mult2nums(x,y)

x = x + 3

res = x * y;

>> x = 1;

>> y = 2;

>> res = mult2nums(x, y);

>> x * y

2
7

1

2
x

y

1

2

x

y

4

8res

How much is x * y ???
X retained its original value.

8res

Call by value

function printAnimals (a 1, a 2)

disp (['Before the swap function: ', a 1, ' ', a 2]);

swapAnimals (a 1, a 2);

disp (['After the swap function: ', a 1, ' ', a 2]);

function swapAnimals (a 1, a 2)

temp = a 1;

a1 = a 2;

a2 = temp;

disp (['Inside the swap function: ', a 1, ' ', a 2]);

>> printAnimals ('frog', 'cow')

2
8

What does the
program print?

The content of the local copy of variables within the swap
function is swapped.

The content of the variables outside the swap function is
NOT swapped.

How can we cause the swap to persist after function call is
terminated?

Call by value

2
9

Call by value

function printAnimals(a1, a2)

disp(['Before the swap function: ', a1, ' ', a2]);

[a1, a2] = swapAnimals(a1, a2);

disp(['After the swap function: ', a1, ' ', a2]);

function [a1, a2] = swapAnimals(a1, a2)

temp = a1;

a1 = a2;

a2 = temp;

disp(['Inside the swap function: ', a1, ' ', a2]);

>> printAnimals('frog', 'cow')

3
0

Is there a difference in the output of the
following two functions?

3
1

function func1()

i = 0;

while (i < 5)

increment(i);

disp ('Same same but different…');

end

function increment(i)

i = i + 1;

function func2()

i = 0;

while (i < 5)

disp ('Same same but different…');

i = i + 1;

end

Endless loop

DNA Palindrome Detection

Introductory Computer Sciences 2018-2019
Fall Week #7

32

33

DNA Palindrome Detection

DNA Palindrome Detection

34

35

DNA Palindrome Detection
for ii = 6:length(seq) - 5

% Checking if subsequence is a palindrome

n_match = 0;

for i_p = 1:5

if seq (ii - i_p) == 'A' && seq (ii + i_p) == 'T' || ...

seq (ii - i_p) == 'T' && seq (ii + i_p) == 'A' || ...

seq (ii - i_p) == 'C' && seq (ii + i_p) == 'G' || ...

seq (ii - i_p) == 'G' && seq (ii + i_p) == 'C'

n_match = n_match + 1;

else

break ;

end

end

% If palindrome then display its sequence and position

if n_match == 5

pal = seq (ii - 5:ii + 5);

disp (pal)

disp ([ii - 5, ii + 5])

end

end

DNA Palindrome Detection

36

37

DNA Palindrome Detection

• How can we change the previous program to:
• Find all palindromes of sizes ranging between 7

and 21?

• How expensive (in terms of computer operations) is it
to compute all this?

DNA Palindrome Detection

38

tic

for m = 7:2:21

for ii = (m+1)/2:length(seq) - (m- 1)/2

% Checking if subsequence is a palindrome

n_match = 0;

for i_p = 1:10

if seq (ii - i_p) == 'A' && seq (ii + i_p) == 'T' || ...

seq (ii - i_p) == 'T' && seq (ii + i_p) == 'A' || ...

seq (ii - i_p) == 'C' && seq (ii + i_p) == 'G' || ...

seq (ii - i_p) == 'G' && seq (ii + i_p) == 'C'

n_match = n_match + 1;

else

break ;

end

end

% If palindrome then display its sequence and position

if n_match == (m - 1)/2

pal = seq(ii - (m- 1)/2:ii + (m - 1)/2);

disp (pal)

disp ([ii - (m- 1)/2, ii + (m - 1)/2])

end

end

end

toc

39

DNA Palindrome Detection

RESULTS

Sorting Algorithms

Bubble Sort

Introductory Computer Sciences 2018-2019
Fall Week #7

40

Sorting

• Sorting is a very basic operation which is performed routinely. Therefore,
we want to find an efficient sorting algorithm.

4
1

Bubble sort

4
2

512354277 101

1 2 3 4 5 6

Bubble sort

• Bubble sort

4
3

512354277 101Swap42 77

1 2 3 4 5 6

Bubble sort

• Bubble sort

4
4

512357742 101Swap35 77

1 2 3 4 5 6

Bubble sort

• Bubble sort

4
5

512773542 101Swap12 77

1 2 3 4 5 6

Bubble sort

• Bubble sort

4
6

577123542 101

There is no need to swap

1 2 3 4 5 6

Bubble sort

• Bubble sort

4
7

577123542 101 Swap5 101

1 2 3 4 5 6

Bubble sort

• Bubble sort

4
8

77123542 5 101

Largest value correctly placed

1 2 3 4 5 6

Bubble sort

Array is sorted !!!

4
9

77123542 5

1 2 3 4 5 6

101

5421235 77 101

4253512 77 101

4235512 77 101

4235125 77 101

Bubble sort

5
0

function array = bubbleSort(array)

for i = (length(array) – 1) : - 1 : 1

for j = 1 : i

if array(j) > array(j+1)

%swap

temp = array(j);

array(j) = array(j + 1);

array(j + 1) = temp;

end

end

disp(array)

end

Bubble sort

5
1

>> array = randperm(10)

array =

5 6 9 1 4 2 10 8 3 7

>> bubbleSort(array)

5 6 1 4 2 9 8 3 7 10

5 1 4 2 6 8 3 7 9 10

1 4 2 5 6 3 7 8 9 10

1 2 4 5 3 6 7 8 9 10

1 2 4 3 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

1 2 3 4 5 6 7 8 9 10

Bubble sort

5
2

• What is the time complexity?
• time complexity - The way in which the number of steps required by an algorithm varies with the size of

the problem it is solving. Time complexity is normally expressed as an order of magnitude, e.g. O(N^2)
means that if the size of the problem (N) doubles then the algorithm will take four times as many steps
to complete.

• What is the space complexity?
• space complexity - The way in which the amount of storage space required by an algorithm varies with

the size of the problem it is solving. Space complexity is normally expressed as an order of magnitude,
e.g. O(N^2) means that if the size of the problem (N) doubles then four times as much working storage
will be needed.

• Can we do better?

http://encyclopedia2.thefreedictionary.com/algorithm
http://encyclopedia2.thefreedictionary.com/algorithm

53

