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image7.png
If the linear system (9) has no solution, it is said to be inconsistent; if it has a solution,
it is called consistent. If by = by = by, = 0, then (9) is called a homogeneous
system. Note that z; = 2, = -+ = 2, = 0 is always a solution to a homogeneous
system; it is called the trivial solution. A solution to a homogeneous system in which
not all of 21, 7, ..., z, are zero is called a nontrivial solution.

Consider another system of r linear equations in n unknowns:
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cnry + cpry 4o 4 ocpr, = dy
Ty + CpTy + 0 4+ oy = da
. . o (10)

Ty + Ty + o+ T, = d,

We say that (9) and (10) are equivalent if they both have exactly the same solutions.
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Solving Linear systems
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Consider the linear system of m equations in n unknowns,

anry +  aprz +
anry +  apry +

ATt + Qa2 +

+  ainZn
+  a;mTn
+  AmnTn

by

(13)
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Now define the following matrices:

an @iz -t Qi Ty
Gz G2 - G2n T2

Am1 Am2 " OGmn In
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Then

+ 4 ainTn
+- 4 amTn

+F AmnTn

(14)
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The entries in the product Ax at the end of (14) are merely the left sides of the equations
n (13). Hence the linear system (13) can be written in matrix form as

Ax=b.
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The matrix A is called the coefficient matriz of the linear system (13), and the
matrix

apn a2 iz - Qip | by

@y azx ap oo az | by
i

. . . L

I

Qm1 Qm2 Am3 - Qmn !

b
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obtained by adjoining column b to A, is called the augmented matriz of the linear
system (13). The augmented matrix of (13) is written as [A : b]. Conversely, any
matrix with more than one column can be thought of as the augmented matrix of a
linear system. The coefficient and augmented matrices play key roles in our method for
solving linear systems.
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Qi @iz @3 o Qi) by

. ay  axp axp o az | by
[Aib] = N '
I

Am1 Qm2 Gm3 °° Qmn ! bm

be the augmented matrix of the linear system (13). Using elementary row operations,

we can transform [A ! b] to [C i d] which is in reduced row echelon form. Therefore,
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By using elementary row operations,

11 2i1 1
02 7i4 — |0
3363 s 0

—3rydra oy
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The augmented matriz of the linear system is

[Aib] =1

o w

N

w o
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Transforming this matriz to row echelon form, we obtain (verify)

1 2/31 7/3
[Cid] = [0 —31/3 1 7119/3] .

0 0p 11
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Since, rc =2 #r =3 linear system has no solution (inconsistent). This can be

R
verified by the last equation: 0z + 0y = —11 which can never be satisfied.
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Homogeneous Systems
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Now we study a homogeneous system Ax = 0 of m linear equations in n unknowns.
Let [C'}0] be a reduced row echelon form of the augmented matrix [A 0] . Since

we always have rc =7 . a homogeneous system always has a solution:
©io
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Example 135. Solve the homogeneous system

—3r+2y—32=0
20 +5y+22=0
4r+y—32=0.
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The augmented matriz of the homogeneous system is
-3 2 —3i0
[Ajo] =| 25 2i0
41 =3:0
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By using elementary row operations,

-3 2 -310 -3 2 =310 13 —6i0

25 210 — | 25 2i0 — | 25 2i0

41 =310 13 =60 =3 2 =310 [2ntnon
[ P, [ :

g 4y vy




image1.png
Linear Equation Systems
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Since r = 3 = n, the homogeneous system has only trivial (zero) solution, that is,
z=0.

=
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Theorem 136. A homogeneous system of m linear equations in n unknowns always has
a nontrivial solution if m < n, that is, if the number of unknowns exceeds the number
of equations.
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Cramer’s Rule
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an Ty + appry 4 -+ agr, = by

1Ty + A%y + - -+ + g, = by

ATy + ATy + - + Ay, = by

be a linear system of n equations in n unknowns, and let A = [a;;] be the coefficient
matrix so that we can write the given system as Ax = b, where
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If det(A) # 0, then the system has the unique solution

_ det(4y) _ det (4) _ det(4,)
T Get(A) 0 T et (A T T Tdet(A)

where A; is the matrix obtained from A by replacing the ith column of A by b.
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Example 137. Consider the following linear system:

=2y + 325 — 25 =1
x4+ 219 — 23 =4
—2r; —xp+ 23 = —3.
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-2 3 -1
We have |[A|=| 1 2 —1|=-2. Then
-2 -1 1
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One of the most frequently recurring practical problems in many fields of study- such
as mathematics, physics, biology, chemistry, economics, all phases of engineering, oper-
ations research, and the social sciences-is that of solving a system of linear equations.
The equation

ayry + apry + -+ apzn =b (8)
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Remark 138. We note that Cramer’s rule is applicable only to the case in which we
have n equations in n unknowns and the coefficient matriz A is nonsingular. If we
have to solve a linear system of n equations in n unknowns whose coefficient matriz is
singular, then we must use the Gaussian elimination or Gauss-Jordan reduction methods
as discussed before. Cramer’s rule becomes computationally inefficient forn > 4, so it is
better, in general, to use the Gaussian elimination or Gauss-Jordan reduction methods.
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Summary 139. Note that at this point we have shown that the following statements
are equivalent for an n X n matriz A:

1. A is nonsingular.

2. Ax = 0 has only the trivial solution.

3. A is row (column) equivalent to I,.

4. The linear system Ax = b has a unique solution for every n x 1 matriz b.
5.

. det(A) # 0.
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Solving Linear Systems via the Inverse of a Coefficient Matrix
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Consider the linear system of n equations in n unknowns.

anTy + appry + -+ appr, = by

a1y + ATz + - - + Q2pTy

Ap1T1 + AnaTo + - + Apnln = by
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Let A = [a;;] be the coefficient matrix of the linear system so that we can write the
given system as Ax = b, where
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If det(A) # 0 then A is nonsingular (invertible) and A~! exists. Therefore, the equation
Ax = b becomes;

Ax = b
A'Ax = A'b=x=4"b.

So, we can solve the linear system by using the inverse of the coefficient matrix.
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Example 140. Solve the following linear system by using the inverse the coefficient
matriz.

r+3y+z

2r4+y+z

—2r+4+2y—=z
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We have A
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1 -1 5/3 2/3
Then A~' = ——adjA = 0 1/3 1/3
“ T e 2 _8/3 —5/3
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‘which expresses b in terms of the unknowns =1, 11, . . ., 7, and the constants ay,as, ..., a,
is called a linear equation. In many applications we are given b and must find
numbers z1,7s,...,z, satisfying (8). A solution to linear Equation (8) is a se-
quence of n numbers sy, Sy, ... .., s,, which has the property that (8) is satisfied when
Ty =S;,Ty = Sy,...,T, = S, are substituted in (8). Thus z; = 2,7, = 3, and 23 = —4
is a solution to the linear equation
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-1 5/3 2/37[s 11/3
= o 13 13 [4 =| 73
2 —8/3 —5/3| |3 —17/3
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62y — 3x9 + 423 = —13

because
6(2) — 3(3) + 4(—4) = —13
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anry 4+ apry + o0+ awT, = by
anTy 4+ aprs 4+ -+ agmr, = by

. . . (9)
ATy + Ty + 0 4 ApaZn = by

Thus the ith equation is

Ty + QipTy + + QinTn = by
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In (9) the a;; are known constants. Given values of by, by, . . ., by, we want to find values
of 21, 73,..., 2, that will satisfy each equation in (9). A solution to linear system (9)
is a sequence of n numbers sy, ss, ..., Sp, which has the property that equation in (9)
is satisfied when 71 = sy, 22 = s2, ..., T, = s, are substituted.




