Course Name: Introduction to Coastal Hydraulics

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Group(s)</th>
<th>Language</th>
<th>Lecture</th>
<th>Prac</th>
<th>Lab</th>
<th>Credit</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>INS3222</td>
<td>Introduction to Coastal Hydraulics</td>
<td>2</td>
<td>English</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Year: 2019-2020
Semester: Spring
Group(s): 2
Language: English
Lecture: 3
Prac: 0
Lab: 0
Credit: 3
ECTS: 4

Course Type: Basic Sciences
Prerequisites: Fluid Mechanics 0422212
Coordinator*: Assoc. Prof. Dr. Yeşim Çelikoğlu
Instructor: Assoc. Prof. Dr. H. Anıl Güner

Aims: The course is designed to give an introduction to the profession and to provide students with a basic understanding of the wave environment, wave forces and coastal structures.

Course Content: General/ Introduction to Wave Mechanics / Wave Climate and Statistics / Coastal Protection / Wave Loads on Coastal Structures / Breakwaters / Submarine Pipelines

Knowledge and Skills:
- To gain the basic knowledge about the structures like seawalls, breakwaters, coastal defense structures and submarine pipelines
- To understand the importance of the subject

References:
1. **Kıyı Mühendisliği**, 2016, Y. Yüksel, E. Çevik, BETA yayınınevi
2. Hydrodynamics of Coastal Regions, IB. A. Svendsen and I.G. Jonsson
5. CEM (2003)

Assignments and Projects:
1. Wave mechanics
2. Wave Transformations
3. Wave Statistics, Breakwaters
4. Term Paper

Laboratories:
Computer codes:
Other Activities: Site visits

Contribution of The Course Towards Providing Professional Education:
1. Students will learn wave characteristics.
2. To gain knowledge on coastal engineering concepts towards sustainable use of natural resources in coastal and marine environments.
3. To gain principle knowledge in the planning, design, building and monitoring of coastal engineering applications.
4. To examine environmental factors in coastal and maritime engineering.
5. To gain an ability of determination, monitoring and discussion of coastal and maritime engineering issues.
Course Learning Outcomes (Number needed)

1. Students will learn wave characteristics.
2. To gain knowledge on coastal engineering concepts towards sustainable use of natural resources in coastal and marine environments.
3. To gain principle knowledge in the planning, design, building and monitoring of coastal engineering applications.
4. To examine environmental factors in coastal and maritime engineering.
5. To gain an ability of determination, monitoring and discussion of coastal and maritime engineering issues.

Course Outcomes / Learning Outcomes Matrix

<table>
<thead>
<tr>
<th>i</th>
<th>ii</th>
<th>iii</th>
<th>iv</th>
<th>v</th>
<th>vi</th>
<th>vii</th>
<th>viii</th>
<th>ix</th>
<th>x</th>
<th>xi</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td></td>
<td>√</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>√</td>
</tr>
</tbody>
</table>
Success Evaluation

Theoretical Courses

<table>
<thead>
<tr>
<th>Number</th>
<th>Weight (%)</th>
<th>Projects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Midterms</td>
<td>1</td>
<td>60*(0.80)</td>
</tr>
<tr>
<td>Quizzes</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Assignments</td>
<td>5</td>
<td>60*(0.15)</td>
</tr>
<tr>
<td>Term paper (project, report, etc)</td>
<td>1</td>
<td>60*(0.05)</td>
</tr>
<tr>
<td>Laboratories</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Others</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Final</td>
<td>1</td>
<td>40</td>
</tr>
</tbody>
</table>

Subjects

1. Week Introduction, Definition of Coastal Areas,
2. Week Classification of Water Waves, Wave Characteristics
3. Week Assumptions on Wave Theories, Linear Wave Theory, Wave Form, Propagating Wave, Hyperbolic Functions
4. Week Wave Celerity, Wave Kinematics
5. Week Pressure Distribution, Wave Energy, Energy Flux **HOMEWORK 1**
6. Week Wave Transformations; Shoaling, Refraction
7. Week Wave Transformations; Shoaling, Refraction
8. Week **MIDTERM**
9. Week Wave Transformations; Reflection, Diffraction, Wave Breaking
10. Week Wave Transformations; Wave Breaking **HOMEWORK 2**
11. Week Wave Climate and Statistics; Wave generation, Wave forecasting **HOMEWORK 3**
12. Week Breakwaters, Rubble Mound Breakwaters, Wave Run-up **HOMEWORK 4**
13. Week Seabed Hydrodynamics and Coastal Protection **HOMEWORK 5**
14. Week TERM PAPER
Code : INS3222
Course Name: Introduction to Coastal Hydraulics

<table>
<thead>
<tr>
<th>Groups</th>
<th>Time and Place</th>
<th>Instructor</th>
<th>Office Number</th>
<th>Office Hours</th>
<th>E-mail</th>
<th>Web</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Monday 10:00–13:00 F1-101</td>
<td>Assoc. Prof. Dr. H. Anıl Güner</td>
<td>H Blok-04</td>
<td>Tuesday 14:00–15:00</td>
<td>aari@yildiz.edu.tr</td>
<td>www.inm.yildiz.edu.tr</td>
</tr>
</tbody>
</table>